
ELSEVIER 
S0032-3861 (96)00274-1 

Polymer Vol. 37 No. 18, pp. 4107 4110, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0032-3861/96/$15.00 + 0.00 

Comparison of the Havriliak-Negami and 
stretched exponential functions 

S. Havril iak, Jr* 
Rohm and Haas Research. Bristol Research Park. PO Box 219, Bristol PA 19007. USA 

and S. J. Havri l iak 
Havriliak Software Development Co., Huntingdon Valley, PA 19006, USA 
(Received 23 December 1994; revised 16 January 1996) 

Alvarez, Algeria and Colmenero compared the stretched exponential (KWW) and Havriliak-Negami 
(H-N) functions by comparing their distributions of relaxation times. In the case of the KWW function, the 
distribution of relaxation times was calculated numerically. The numerical results were then represented in 
terms of the closed form distribution of relaxation times available for the H - N  function. They found that a 
specific KWW k parameter corresponds to a specific H - N  a,/3 pair. In this paper the time-dependent 
dielectric constant, calculated from the stretched exponential for various ks and over a time range 
sufficiently long to define the t = 0 or cc limits, was transformed to the complex dielectric constant using the 
extended Schwarzl method. The complex dielectric constant was fitted directly to the H - N  function. The 
results of this procedure are compared with those of Alvarez et al. The two different methods give the same 
results and the consequences of this agreement are discussed. Copyright © 1996 Elsevier Science Ltd. 
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I N T R O D U C T I O N  

An expression often used to represent the time decay (or 
rise) of  physical process is the so-called stretched 
exponential or K W W  1 3 function, given in the normal-  
ized form for the dielectric case by equation (1): 

e.(t) = (e(,)_-- eo~ = 1 _  exp(_(t / ro)k)  (1) 
\ ~o - ~ / 

In this expression c,(t) is the time-dependent dielectric 
constant and k is the K W W  parameter,  To is the relax- 
ation time, while e0 and Eo~ represent the equilibrium and 
instantaneous dielectric constants, respectively. 

Another function used to represent dielectric relaxa- 
tion data in the frequency domain is the H - N  function 4'5 
defined by 

e~,(w) = (g*(w) -_~oc,.'~ = {1 +(iwro)~}  =J (2) 
\ S o - e ~  / 

In this expression, e*(w) is the normalized complex 
dielectric constant (or complex relative permittivity) 
measured at radian frequency w = 27rf, f is in Hz and i is 
v /ST .  The parameters a and/3 represent the width and 
skewness of  the dielectric loss (en(w)) when viewed in a 
log(w) plot. These parameters  also describe the distribu- 
tion of  relaxation times which can be obtained in a closed 
form from equation (2). The relaxation time is repre- 
sented by 7- o . 

The distribution of relaxation times can be obtained 
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from equation (2) and the corresponding integral 
equation relating it to a distribution of relaxation 
times. The distribution function, F (y) ,  is given by 

F ( y )  = (1 )y~(s in /30) (yZ '~  + 2y~ cosTra + l ) - /3/2 

(3) 

In this expression, y = 7-/r 0 and 

0 = arctan (4) 
y~ + cos 7ra J 

RESULTS A N D  D I S C U S S I O N  

Alvarez et al. 6 calculated numerically the distribution of 
relaxation times from equation (1) for given values of  k 
in the range of 0.1 to 1.0 and then fitted the numerical 
results to equation (3) using a non-linear regression 
routine. Plots of  their results are given in Figures 1, 2 and 
3. No statistical information was supplied by these 
authors to describe parameter  confidence intervals or the 
model standard error of  estimate. 

Koizumi and Kita 7 transformed e,(t) to e~(w), 
calculated over a log(time) range of - 3  to +3 from the 
stretched exponential K W W  function for given values of  
the k parameter  from 0.29 to 1.0 incremented by 0.01. 
Dishon et al. 8 also treated the same problem but did not 
mention the results of  Koizumi and Kita. Their 
parameter  range was from 0.02 to 1 and they used the 
same time range. Their procedure was similar and the 
results were reported to six places. 
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In Figure 4 we have plotted c,,(t) over the log(time) 
range of - 4 0  to +30 for k = 0.04. The log(t) range o f ± 3  
is simply inadequate to define the KWW function. 
Instead of relying on published tables, 2"(~,,) was 
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Figure 4 Plot  o f t ( t )  as a funct ion of  t ime for k = 0.04. The heavy line 
represents  the t ime range repor ted in reference 8 

calculated from c(t) using the modified Schwarzl 
method 9. Examples of the complex dielectric constant, 
either as a complex plane plot or as ~(~),  c"(a;) vs log(~;) 
plots, are given in Figures 5 and 6 respectively for the 
case k - 0.04. 

The transformed complex dielectric constants can be 
fitted to equation (2), using non-linear regression tech- 
niques based on rigorous statistical techniques m J3 to 
determine the parameters ~, '3 and 7- 0 directly for 
different k values. Although nonlinear regression can 
be carried out in a number of different ways, the software 
chosen here is PROC NLIN, available through SAS R14. 
The convergence criterion for this software is given by 

< 10 -~ (5) 
d~+lO 6 

In this expression, i is the ith iteration and i -  1 is the 
preceding one. This software also reports the parameter 
confidence intervals, determined at convergence, an 
important feature when making comparisons. 

Parameters, their confidence intervals as well as the 
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Figure 5 Plot of  the t rans formed  ~'(~) and  40 × S(~ ' )  as a funct ion of  
Iog(~.,) for the case of the K W W  paramete r  k = 0.04. The  symbols  
represent  t ransformed values and  the lines represent  expecta t ion  values. 
The two lines hover ing  abou t  zero are the real and  imag ina ry  residuals  
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Figure 6 Plot of the transformed and fitted s ' (a  0, as well as the error 
defined in the text, given here as a function of log(~) for the case of the 
KWW parameter k = 0.5. The definitions are given in the legend 

standard model errors of estimate are given in Table 1 for 
a few k values covering the range of  0.04 to 1.0 to 
illustrate the statistics describing the fit. An overlay plot 
of transformed and fitted results is given in Figure 5. 
Plots of  the various parameters are also given in Figures 
1-3. In Figure 1, the dimensions of  the solid circles do 
not represent confidence intervals, which are unknown, 
but the width of the line represents about 0.5or as 
obtained in this work. In Figure 2 the diameter of 
the circles and the two solid lines represent 2or, while the 
dashed line has no significance in relation to the 
parameter confidence intervals. It is evident from Figures 
1 and 2 that although the ~fl product was determined by 
AAC without much scatter, the individual parameters 
showed considerable scatter. In Figure 3, the width of the 
line represents the parameter confidence intervals. 

The agreement between Alvarez et al. 6 and the 
present results is within the scatter of  the former case. 
The conclusion drawn from both studies is that for a 
given KWW k parameter there exists a specific a,/3 
pair. The converse is not true since functions like the 
Cole-Cole (set r =  1 in equation (2)), or other 
symmetrical functions like the Fuoss-Kirkwood z5 
and Gaussian ~6 ones, cannot be represented by the 
KWW function. Also, some authors discuss the merits 
of the Cole-Davidson function (set a = 1 in equation 
(2)) vs the KWW function. We see from the data 
shown in Figure 2 that, over a fi parameter range of 
0.8 to 1.0, the range of a <_ 0.95. We have observed 
that for most analyses of experimental data the 

confidence interval for c~ is about 0.02, so that in 
this range of/3 the two functions are for all practical 
purposes the same. 

As an example of the problem that experimentalists 
have when comparing different functional forms, con- 
sider the case of k = 0.5. The transformed and fitted 
results for the loss are given in Figure 6. In this case only 
the loss was used for the regression, so that the fit is 
somewhat better than that seen in Figure 5. The 
parameters are listed in Table I under e"(a;). There is 
a slight difference in the parameters because the fit is not 
exact and the parameters depend on the data used for 
determining the parameter. The line representing error 
in Figure 6 was calculated from the standard deviation 
at the particular frequency divided by the loss mean 
estimated over the entire frequency range. Over most of 
the range the error is less than 2% and only in a limited 
range is it about 3.5%. The frequency range in that 
figure is 8 decades, and the error greater than 2% is 
limited to the log frequency range of -2.5 to -1.5. A 
2% error is about the limit of experimental error 
because of the practical problems of not only making 
the electrical measurements but keeping the temperature 
constant. In other words, these small differences are not 
expected to be readily observed except when extreme care is 
exercised. 

In Figure 7 we have represented the same data in the 
form of log-log plots. It is evident that the separation 
between the two curves increases with frequency as the 
frequency changes from the central or relaxation 
frequency. We can calculate and plot the slope of these 
curves as a function of log(frequency), see Figure 7. It can 
be shown that the low frequency slop (m) for the H - N  
function is a and the high frequency slope (1 - n) is aft. 
For the specific case shown in Figure 7 the values of  
rn = ct = 0.776 (0.002) and 1 - n = -(x¢/= -0.3982 
(0.0002), and finally fl = 0.512, are obtained by aver- 
aging the extreme I0 points in Figure 8. These results are 
within 3cr of those listed in Table 1, indicating that the 
process is an H - N  function, as expected. The same 
calculations for the transformed data, i.e. for the KWW 
function, yield m = c ~ = l . 0 0  (0.01) and l - n =  
- a f t  = 0.499 (0.003) and finally/3 = 0.50 (0.01). These 
results suggest that the limiting high/low frequency 
behaviour is best represented by the Davidson-Cole z7 
function, i.e. a = 1 in equation (2). These results, i.e. the 
high and low frequency limits of the KWW function, are 
that of the Davison-Cole function which has been 
reviewed by B6ttcher and Bordewijk zS. In other words, 
at low frequencies the KWW function is that of the 
Debye process. 

Table 1 H - N  parameters and their limits for representing the dielectric relaxation behaviour of the KWW function for various levels of b 

Parameter k = 1.0 s*(w) k = 0.7 e*(w) k = 0.5 e*(co) k = 0.5 e"(a 0 k = 0.3 ~*(~) k = 1.0 e*(co) k = 0.07 e*(w) k = 0.04 e*(~o) 

In fo a 1.332 1.332 0.86 0.78 0.06 0.06 -4.6 - 11.0 

cr 0.008 0.008 0.02 0.01 0.03 0.03 0.1 0.2 

c~ 0.933 0.933 0.831 0.784 0,624 0.624 0.158 0.099 

~r 0.002 0.002 0.004 0.003 0.005 0,005 0.002 0.001 

d 0.677 0.677 0,516 0.508 0.401 0.401 0,327 0.306 

~r 0.004 0.004 0.005 0.005 0.005 0.005 0,007 0.006 

~r ~ 0.7 0.7 1.1 - 1.3 1.3 0.25 0.25 

~r" 3,4 3.4 5.7 2.0 6.6 6.6 8.7 8.7 

"In f0 = - I n  r 0 
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Figure 8 Plot of the transformed and fitted slopes as ~ function oi 
log(~,,) for the case of the KWW parameter k 0.5 

C O N C L U S I O N S  

Despite a lack of unbiased evidence, KWW has been 
cited, in some cases at least, as a 'universal model "j9 or as 
the 'universality of  Kohlrausch's law "2°. The results of 
comparing K W W  and H - N  functions to represent 
dielectric relaxation data of poly(4-chlorostyrene), by 
Yoshihara and Work 2~ , or the study on 3-bromopentane 
by Berberian and Cole 22. showed that the universality 
claim is probably not true. Although these comparisons 
are technically sound, they do have two major short- 
comings. First, the studies did not use unbiased statistical 
methods to evaluate the parameters, nor were residuals 
compared. Second, the studies are limited in extent 
because poly(4-chlorostyrene) 21 or 3-bromopentane 2-~ 
were assumed to be representatives of  polar materials. 

In contrast to these methods, consider the work or" 
Jonscher 23 who determined the high (m) and low ( 1 n) 

frequency slopes for 100 materials. These slopes are 
plotted in an m - 1 (~x/3) vs n (c~) plane. Most of  the data 
are scattered throughout this plane with only a few of the 
material parameters falling on the Debye coordinates, 
i.e. ~x = ,~f = 1. In other words, he found no experimental 
evidence to support the universality of  the KWW 
function at low frequencies. In another study 24 the c~/~ 
parameters were determined for nearly 1000 compounds 
which included polymers, their solutions, and polar 
liquids. Once again the data points were scattered 
throughout the H - N  equivalent of  Jonscher's m - 1 vs 
n plane, i.e. the c~ - log (fl) plane. These two independent 
studies, using two different analytical methods, came to 
the same conclusion, i.e. there is no evidence to support 
the generality of  the K W W  function. 
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